汪偉,博士,副研究員;江西南豐人。
1999-2003年,中國(guó)科技大學(xué),獲理學(xué)學(xué)士學(xué)位;
2003-2008年,中國(guó)科技大學(xué),獲博士學(xué)位;
2008-2012年,美國(guó)科羅拉多大學(xué)博爾德分校,博士後(hòu);
2012年10月-2022.3,以“春蕾人才”引進(jìn)中國(guó)科學(xué)院甯波材料所,任副研究員。
2022.4-至今,中國(guó)科學(xué)院甯波材料所,副研究員,停薪留職
目前研究方向(xiàng):石墨烯薄膜研究
電話/傳真:0574-86324652 Email:wangwei@nimte.ac.cn
論文
1. Yi Ouyang, Gang Lou, Ying Xie, Wei Wang*, Zhaoping Liu*, Relating the orientation of graphene on Cu grains by Euler Angles, Surfaces and Interfaces, 2022, 30:101837 (PDF)
2. Mengqing Yin, Liqiong Wu, Hua Chen, Xiaohui Zhang, Wei Wang*, Zhaoping Liu*, Transparent UHF RFID tags based on CVD-grown graphene films, Nanotechnology 2022, 33, 505501 (PDF)
3. Cristal Solares-Bockmon, Aniqa Ibnat Lim, Mohammadjavad Mohebinia, Xinxin Xing, Tian Tong, Xingpeng Li, Steven Baldelli, T.R. Lee, Wei Wang, Zhaoping Liu, Jiming Bao*, Generalized dynamic junction theory to resolve the mechanism of direct current generation in liquid-solid interfaces, Nano Energy, 2022, 99: 107364 (PDF)
4. Zhikun Zhang, Lianlian Xia, Lizhao Liu, Yuwen Chen,Zuozhi Wang,Wei Wang, Dongge Ma*, Zhaoping Liu*; Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes, Journal of Materials Chemistry C, 2021, 9: 2106-2114 (PDF)
5. Gang Lou, Yi Ouyang, Ying Xie, Wei Wang*, Zhaoping Liu*; Growth of wrinkle-free and ultra-flat Bi-layer graphene on sapphire substrate using Cu sacrificial layer, Nanotechnology, 2021, 32: 475603 (PDF)
6. Huajie Zhuang, Wei Deng, Wei Wang,* and Zhaoping Liu,* Facile fabrication of nanoporous graphene powder for high-rate lithium–sulfur batteries. RSC Advances 2017, 7, 5177.(PDF)
7. Wei Xu, Wei Wang,* Zhiyong Guo, and Zhaoping Liu,* Fabrication of submillimeter-sized single crystalline graphene arrays by a commercial printing-assisted CVD method. RSC Advances 2017, 7, 17800.(PDF)
8. Xu Fan, Xiangping Jiang,* Wei Wang,* Zhaoping Liu,* Green synthesis of nanoporous Si/C anode using NaCl template with improved cycle life. Materials Letters 2016, 180, 109. (PDF)
9. Xu Fan, Jingjing Ji, Xiangping Jiang, Wei Wang* and Zhaoping Liu,* Facile fabrication of stable and high-rate Si/NiSix/CNTs Li-ion anodes with a buffering interface. RSC Advances 2016, 6, 78559. (PDF)
10. ChangJin Wan, YangHui Liu, Ping Feng, Wei Wang,* LiQiang Zhu, ZhaoPingLiu, YiShi,* and QingWan*, Flexible Metal Oxide/Graphene Oxide Hybrid Neuromorphic Transistorson Flexible ConductingGraphene Substrates. Advanced Materials 2016, 28 (28), 5878. (PDF)
11. Rui Liu, LiQiang Zhu,* Wei Wang, Xiao Hui, ZhaoPing Liu and Qing Wan,* Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. Journal of Materials Chemistry C 2016, 4 (33), 7744. (PDF)
12. Junwei Zhang, Caihong Xu, Zhaoping Liu, Wei Wang, Xing Xin, Lu Shen, Xiaobing Zhou, Jie Zhou, Qing Huang,* Enhanced Rate Capability of Polymer-Derived SiCN Anode Material for Electrochemical Storage of Lithium with 3-D Carbon Nanotube Network Dispersed. Nanoscale 2015, 15 (4), 3067. (PDF)
13. Miao Tian, Wei Wang, Yang Liu, Katherine L. Jungjohann, C.Thomas Harris, Yung-Cheng Lee, Ronggui Yang*, A three-dimensional carbon nanonetwork for high performance lithium ion batteries.Nano Energy, 2015, 11,500.
14. W. Wang, M. Tian, Y. J. Wei, S. H. Lee, Y. C. Lee, and R. G. Yang, Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes. Nano Energy 2013,2,943.
15. W. Wang, D. Li, M. Tian, Y. C. Lee, and R. G. Yang, Wafer-scale fabrication of silicon nanowire arrays with controllable dimensions. Appl. Surf. Sci. 2012, 258, 8649.
16. W. Wang, M. Tian, A. Abdulagatov, S. M. George, Y. C. Lee, R. G. Yang, Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. Nano Lett. 2012,12, 655.
17. W. Wang, Genqaing Zhang and Xiaoguang Li, Manipulating growth of thermoelectric Bi2Te3/Sbsuperlattice nanowire arrays. J. Phys. Chem. C 2008, 112, 15190.
18. W. Wang, Genqiang Zhang and Xiaoguang Li, Spontaneous multiple heterostructure formation in Cd-Te nanowire arrays and its optical properties. Chem. Lett. 2008, 37, 848.
19. W. Wang, X. L. Lu, T. Zhang, G. Q. Zhang, W. J. Jiang, X. G. Li, Bi2Te3/Te multiple heterostructure nanowire arrays formed by confined precipitation. JACS 2007, 129, 6702.
20. W. Wang, J. F. Qu, X. L. Lu, G. Q. Zhang, G. Li and X. G. Li, Electrochemical fabrication of BixTe1-x (0.4≤ x ≤0.7) nanowire arrays. Mater. Sci. Forum 2007, 546-549, 2171.
21. T. Miao, W. Wang, Y. J. Wei, and R. G. Yang, Stable high-areal-capacity lithium-ion battery anodes based on three-dimensional Ni-Sn nanowire networks, Journal of Power Source. 2012, 211, 46.
22. D. Li, G. S. Wu, W. Wang, Y. D. Wang, D. Liu, D. C. Zhang, Y. F. Chen, G. P. Peterson, R. G. Yang, Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically- integrated silicon nanowires. Nano Lett. 2012, 12, 3385.
23. T. Miao, W. Wang, S. H. Lee, Y. C. Lee, R. G. Yang, Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces. J. Power Sources 2011, 196, 10207.
24. J. Zhu, D. W. Tang, W. Wang, J. Liu, K. W. Holub, R. G. Yang, Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films J. Appl. Phys. 2010, 108, 094315.
25. G. Q. Zhang, Q. X. Yu, W. Wang, X. G. Li, Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies. Adv. Mater. 2010, 22, 1959.
26. A. Mavrokefalos, A. L. Moore, M. T. Pettes, L. Shi, W. Wang, X. G. Li, Thermoelectric and structural characterizations of individual electrodeposition bismuth telluride nanowires. J. Appl. Phys. 2009, 105, 104318.
27. G. Q. Zhang, W. Wang, Q. X. Yu, X. G. Li, Facile one-pot synthesis of PbSe and NiSe2 hollow spheres: Kirkendall-effect-induced growth and related properties. Chem. Mater. 2009, 21, 969.
28. H. L. Li, H. Zhang, W. Wang, X. Q. Xaing, Y. Q. Zhang, X. G. Li, Ultrasonic study on RuSr2GdCu2O8.Phys. Status Solidi B 2009, 246, 45.
29. G. Q. Zhang, W. Wang, X. L. Lu, X. G. Li, Solvothermal synthesis of V-VI binary and ternary hexagonal platelets: The oriented attachment mechanism. Cryst. Growth Des. 2009, 9, 145.
30. G. Q. Zhang, W. Wang, X. G. Li, Enhanced thermoelectric properties of core/shell heterostructure nanowire composites. Adv. Mater. 2008, 20, 3654.
31. X. L. Lu, W. Wang, G. Q. Zhang, X. G. Li, Dual-activity controlled asymmetric synthesis of superconducting lead hemisphere. Adv. Funct. Mater. 2007, 17, 2198.
32. X. L. Lu, G. Q. Zhang, W. Wang, X. G. Li, Superconducting and oxidation-resistant coaxial lead–polymer nanocables. Angew. Chem. Int. Ed. 2007, 46, 5772.
33. G. Q. Zhang, X. L. Lu, W. Wang, X. G. Li, Facile synthesis of hierarchical PbTe flower-like nanostructure and its shape evolution process guided by a kinetically controlled regime. Chem. Mater. 2007, 19, 5207.
34. G. Q. Zhang, T. Zhang, X. L. Lu, W. Wang, J. F. Qu, X. G. Li, Controlled synthesis of 3D and 1D nickel nanostructures using an external magnetic field assisted solution-phase approach. JPCC 2007,111, 12663.
35. X. L. Lu, G. Q. Zhang, J. F. Qu, W. Wang, From nanorods to nanowires: a controllable synthesis of one dimensional superconducting cuprates. Physica C 2007, 460, 1438.
36. G. Q. Zhang, X. L. Lu, J. F. Qu, W. Wang, G. Li, X. G. Li, Solution phase synthesis of superconducting La2CuO4 microspheres. Mater. Sci. Forum 2007, 546-549, 2071.
37. X. Q. Xu, T. Qiang, G. Q. Zhang, T. Zhang, G. Li, W. Wang, X. G. Li, Fabrication and magnetic properties of multiferroic BiFeO3 nanotube arrays. Chem. Lett. 2007, 36, 112.
38. G. Q. Zhang, X. L. Lu, T. Zhang, J. F. Qu, W. Wang, X. G. Li, S. H. Yu, Microstructure and superconductivity of highly ordered YBa2Cu3O7-delta nanowire arrays. Nanotechnol. 2006, 17, 4252.
39. J. F. Qu, W. Wang, Y. Chen, G. Li, X. G. Li, Raman spectra study on nonstoichimetric compound NaxCoO2. Phys. Rev. B 2006, 73, 092518.
40. R. K. Zheng, G. Li, Y. Yang, A. N. Tang, W. Wang, T. Qian, X. G. Li, Transport, ultrasound, and structural properties for the charge-ordered Pr1-xCaxMnO3 (0.5 ≤ x ≤ 0.875) manganites. Phys. Rev. B 2004, 70, 014408.
41. R. K. Zheng, G. Li, Y. Yang, A. N. Tang, W. Wang, X. G. Li, Z. D. Wang, H. C. Ku, The role of the cooperative Jahn-Teller effect in the charge-ordered La1-xCaxMnO3 (0.5 ≤ x ≤ 0.87) manganites.Appl. Phys. Lett. 2003, 83, 5250.
42. A. N. Tang, Y. Yang, W. Wang, R. K. Zheng, G.A. Li, X. G. Li, J. N. Wei, J. P Shui, The relationship between the cooperative Jahn-Teller effect and the internal friction behavior for the charge ordered La1-xCaxMnO3 (0.50 ≤ x ≤ 0.85), Acta Metall. Sinica 2003, 39, 1179.
43. R. K. Zheng, G. Li, Y. Yang, A. N. Tang, W. Wang, X. G. Li, Z. D. Wang, H. C. Ku, Transport, magnetic, specific heat, internal friction, and shear modulus in the charge ordered La0.25Ca0.75MnO3manganite. J. Appl. Phys. 2003, 94, 514.
授權專利:
1.汪偉、劉兆平,卷對(duì)卷管式爐氣相沉積裝置及其生産工藝,ZL201420304373.3;
2.王姣霞、汪偉、劉兆平,一種(zhǒng)連續快速生長(cháng)石墨烯的氣相沉積裝置,ZL201420304385.6;
3.莊華傑 、汪偉 、劉兆平、陳黎,一種(zhǒng)石墨烯的轉移方法,ZL 201410555097.2;
4.王姣霞、汪偉、劉兆平, 一種(zhǒng)石墨烯複合電極,ZL2015201716872.8.